
13 August, 1999

An Automated Benchmarking Tool: The Analysis and

Visualization Module

G. Marcais1, A. Mink and M. Courson

Information technology Laboratory
National Institute of Standards and Technology (NIST)

Gaithersburg, MD 20899
amink@nist.gov

Abstract

Benchmarking and performance evaluation of high performance computing are a
continuous on-going process that consumes significant stage time and generates large amounts
of data to be stored and analyzed. The goal of this work is to propose an automated method to
generate, capture and analyze an extensive performance profile. Although our initial efforts focus
on commodity clusters, they are applicable to any parallel or distributed high performance
computing system. Such an automated system has three main components: (1) a data collection
and storage module, (2) a data analysis module, and (3) a run-time execution module. The focus
of this report is on the data analysis module.

1 Guest researcher from INT

 2

TABLE OF CONTENTS

1. INTRODUCTION 5

2. Visualization tools 7

2.1 Pure visualization tools 8

2.2 Data Analysis language 8

2.3 General mathematical and drawing environment 8

2.4 Spreadsheets 9

3. Statistical analysis 10

3.1 Measurement process assumptions 10

3.2 Graphical tests 10

3.3 Comparing systems using sample data 12

4. Performance analysis 14

4.1 The parallel machine 14

4.2 Assumptions 15

4.3 General metrics definitions 15

4.4 Simple other metrics 16

4.5 Global overhead and speed up 17

4.6 Number of processor working and speed up 19

4.7 The η ratio and the overhead 20

4.8 Tests and representations 21

5. Case Study 23

6. SUMMARY 25

BIBLIOGRAPHY 26

ANNEXE i

A Brief History of NIST [NIST99] i

NIST organization chart ii

Information Technology Laboratory ii

High-Performance Systems & Services Division iii

 3

TABLE OF FIGURES
Figure 1 Project diagram. 5
Figure 2 Performance study flow chart 6
Figure 3 Run sequence plot and lag plot. 8
Figure 4 Different cases of run sequence plot to test fixed location and variation 11
Figure 5 Different lag plot 11
Figure 6 Normal probability graphs for two different distributions 12
Figure 7 Application trace chart 15
Figure 8 Relation between SU and GOH for n≥≥≥≥2 (graph made with n=4) 18
Figure 9 Relation between the speed up, AP and NP. 20
Figure 10 Performance analysis flow chart 21
Figure 11 Kiviat representation of a perfect system and the worse system 21
Figure 12 Description of the metrics around the Kiviat graph 22
Figure 13 Kiviat graph for the LAM and MPICH environment. (NB: a value bigger than 0 zero

plotted for POH/(n-1) to make it visible, but it is 0) 24
Figure 14 Organization chart. ii

 5

1. INTRODUCTION
Parallel computing has become commonplace in the high performance computing arena

resulting in continual Quality of Service (QOS) evaluation for system tuning. Computing
technology generations last only 18 months resulting in platform upgrade or replacement every 2
to 3 years. These factors require frequent running of benchmark codes which are used to
evaluate new platforms or tune existing ones.

Different parallel machines are available at NIST for scientists to use: IBM SP2s, SGI
Origin 2000s and Linux PC clusters [SALA99], [BEOW94]. In addition, our laboratory possesses a
Linux PC cluster and a Windows NT cluster (under construction). MPI and PVM parallel
environments are available on all these platforms.

Benchmarking these parallel architectures is more complex than for sequential machines
as the number of factors and the amount of data involved increases. NIST is investigating the
feasibility of developing an automated benchmarking toolset to reduce the manual effort involved
in determining the various run configurations, instrumenting each program for performance data
generation, running each configuration, collecting and storing the performance data and then
retrieving the desired data for analysis and visualization. It is our intent to construct this toolset
from a number of existing tools.

Cluster Profiling Project

Data Description

Data Collection

Storage

1. Data Collection & Storage

Visualization

Cluster Metrics

Exploratory techniques

Statistics

Data Analysis

2. Analysis & Visualization

Design of Experiment

Run environment

Data collection

User Front End

3. Experiment Control

Main Project

Figure 1 Project diagram.
The proposed benchmarking toolset consists of three modules as shown on Figure 1.

The data collection and storage module [SIMO98] addresses the runtime collection and storage
of performance data for later retrieval. The data storage organization is based on an abstract
model of the cluster. Tools were reviewed to collect performance data and to store them
efficiently.

This paper focuses on the analysis and visualization module. Figure 2 shows how this
module integrates into the performance analysis process. Given an application and a hypothesis
about this application, we design an experiment (i.e. a set of runs) to test this hypothesis. The
‘design of experiment’ box, or experiment builder, selects the runs based on the known
dependencies between parameters and the existing runs in the database. The runs are then
executed on the cluster and the performance data collected during execution stored in the
database. The visualization and statistic module is then used to obtain insight about the
application performance, which leads to the last stage of induction (i.e. determining what can be
improved).

 6

Application Design of
experiment Runs

Data
Base

Visualisation,
statistic Induction

Figure 2 Performance study flow chart

 7

2. Visualization tools
The features needed by our visualization module, are: the capability to plot any pair of

raw data items from the database (e.g. memory usage against time), the capability to display the
graphical statistical tests describe in section 3 and finally to plot the values from computed
metrics (see section 4). The user interface will be a graphical interface.

The visualization tool can be a pure plotting program with no or few computation facilities
and no statistical package. In that case, the computation work is handled by an encapsulating
package that we would build. Alternately, it can be a complete data analysis environment with a
powerful description language and embedded computation facilities. The user graphical interface
(GUI) will be handle by the encapsulating package.

We chose the tools according to their features and their availability on different platforms
(UNIX implementation, Win95/NT, MacOS). In addition, the feasibility of including them in an
encapsulated package was taken in account (existence of an API). Finally, the capability to read
data directly from a database (using ODBC or JDBC) was considered.

Table 1 summarizes the main features of the tools we investigated. The table lists the
name of the tools, if they have a command line interface and a graphical interface (GUI), if they
are commercially purchasable or a free product, if they have a database connectivity built-in, the
name of the company or group who is developing the package and the list of supported platforms.

Tool Cmd
Line

GUI Free2 DBMS Vendor Platforms

GnuPlot Y N Y N
Dartmounth college
http://www.cs.dartmouth.edu/gnuplot_i
nfo.html.

UNIX, VMS,
MSDOS

DataPlot Y Y Y N
NIST.3
http://www.itl.nist.gov/div898/software/
dataplot.html/language.htm.

UNIX, VMS,
MSDOS,
WIN95/NT

IDL Y Y N Y Research Systems4.
http://www.rsinc.com/

WIN95,
MacOS, UNIX

MatLab Y Y N Y MathWorks.5
http://www.mathworks.com/

WIN95,
MacOS, UNIX

Excel N Y N Y Microsoft Corp6.
http://www.microsoft.com.

WIN95,
MacOS

SPlus Y Y N Y MathSoft. http://www.mathsoft.com/ WIN95, UNIX

Table 1 Visualization tools with their main characteristics and platforms.

2 All free software listed here are also open source code
3 This software was developed by employees of the Federal Government in the course of

their official duties. Pursuant to title 17 section 105 of the Unites States Code this software is not
subject to copyright protection and is in the public domain

4 IDL is a registered trademark of Research Systems, Inc.
5 MatLab. Copyright 1984-1999 The MathWorks, Inc.
6 Microsoft and Windows are either registered trademarks or trademarks of Microsoft

Coporation in the U.S.A. and/or other countries.

 8

2.1 Pure visualization tools
GNUPlot is a plotting tool. It does not include a statistical package or database

connectivity. It can plot functions based on their equations or data from a file in 2D or 3D. It is
configurable and relatively user friendly.

Although this tool does not contain any statistical capabilities or a graphical user interface
(GUI), it is in this list because it is free and widely available to the UNIX community. It is small and
the source code is available, which makes it one of the most popular tools for basic plotting. The
ability to write programs and to drive GNUPlot from another application makes it easy to integrate
in a larger tool as the plotting module.

2.2 Data Analysis language
DataPlot contains a very powerful language for data analysis and plotting. This

language, based on English syntax, contains hundreds of statistical functions for running tests
(e.g. t-test, F-test), computing statistical values (e.g. sample mean and confidence interval, etc.),
using standard distributions (e.g. normal, exponential, etc.). This tool was designed by a
statistician for statisticians, resulting in a command line interface and a graphical user interface
front-end that is not very user-friendly. In addition, it does not have a built-in connectivity to a
database.

DataPlot can be driven by another software, exactly the same way the GUI access the
command line version of the software. Thanks to that, it might be easily integrated in a larger tool
under UNIX. However, since EXPECT [EXPE96] is not supported on the WinNT/95 platform,
integrating DataPlot is possible but it might require more work.

Figure 3 shows an example of loading data in DataPlot and then plotting the run
sequence plot and the lag plot of this data (see 3.2).

Figure 3 Run sequence plot and lag plot.

2.3 General mathematical and drawing environment
IDL and MatLab provide roughly the same approach. They are both based on an

array/matrix oriented full-featured language. They can generate their own data or import from a
file or a database, manipulate them and compute statistics. They can be run interactively or
execute a program written in their own language or linked through their API to a program written

 9

in an external language (C, FORTRAN). Moreover, they both offer a GUI and tools to generate a
program with a GUI.

They are not as statistically oriented tools as is DataPlot. However, they both have a
statistical toolbox, powerful programs can be written with their own language and they are
reasonably user friendly. They both offer a built-in connectivity to database (with ODBC and
JDBC).

IDL’s graphical interface is a graphical front-end as it stays mainly command line driven.
Nevertheless, this graphical interface offers a built-in editor, a variable viewer and an enhanced
command line interface. It is therefore a nice environment for both interactive use and developing
IDL programs.

MatLab is a popular software package. It comes with plenty of add on packages
(symulink, fuzzy tool box, etc.) which add a great number of tools to this environment. It is mainly
command line driven (on all platforms) for standard operations. Many of the add on packages
come with a built-in graphical interface, but all actions done with the graphical interface can be
done with the command line and in Matlab’s programs.

2.4 Spreadsheets
Spreadsheets programs offer a different view on data. They represent data on a large 2D

table with relation between cells of this table. It is a convenient way of presenting data or
generating new data. Most spreadsheets have visualization and statistical capabilities.

Excel is a spreadsheet with statistical and visualization features. It has only a graphical
interface. It does not fit easily in a global package, as it does not offer a command line interface
or stand-alone program. It is possible to interact with Excel using Microsoft’s proprietary OLE
technology and Visual Basic API but they poorly interact with the UNIX platform, our main
development platform.

Nevertheless, it is the most widely used spreadsheet, offers easy point-and-click plotting
capability and increasingly advanced statistical functions (regression, trend analysis, ANOVA).

Splus is a 2D-3D plotting program with statistics, data mining tools. It is based on the S
object-programming language [SSYS98] from the Bell Labs specifically developed for data
analysis. It has both a graphical and a command line interface for the WinNT/95 platform and only
a command line interface for the UNIX platform.

Technically, Splus is not a spreadsheet, but it comes with a spreadsheet-like interface on
the Windows graphical interface. Any action on the graphical interface has its equivalent in the S
language.

We selected IDL and MatLab as they offer all the features required: 2D plotting, statistical
features, database link, API. They are both able to plot raw data, perform graphical statistical
analysis and to plot computed data. Therefore, we will use these existing computational features
whereas the GUI will be mainly provided by the encapsulating tool.

 10

3. Statistical analysis
This part proposes methods for the analysis of the collected data.

It focuses on graphical tests to see if our data meets the basic assumptions implied when
using general statistics. Many different techniques exist to test the conformity of the data. We
chose graphical techniques for their simplicity to conduct. We then evaluate techniques to make
accurate systems comparison based on samples of data.

3.1 Measurement process assumptions
To acquire valid statistical analysis, we need to determine certain properties about our

data, or assumed they are met. These properties assure that the experiment has been well
conducted and therefore the statistics we obtain are meaningful. These properties are:

• Fixed location. The mean of the variable stays constant during the measurement process.
This assures that the statistical mean is meaningful.

• Fixed variation. The range of the variable stays the same during the experiment. This is
required to be able to compute the standard error.

• Random drawing. Each measurement is independent from all the other measurement. If not,
the standard error is not valid.

• Fixed distribution. The random variable follows the same distribution while the measurement
process. This is again to compute the standard deviation.

• Normal distribution. The sample is drawn from a population following a normal distribution.

If our data don’t meet these properties it may indicate an error during the experiment. We
have to look more carefully at the experiment process: parameters evolution during the
experiment, dependencies between different runs, number of runs. If some properties are still not
meet, other more sophisticated statistics must be applied (not covered here).

3.2 Graphical tests
• The first two properties (fixed location and fixed variation) can be determined using a run

sequence plot (the sample y versus its dummy index). The shape of the graph should be a
stripe around a horizontal line with a constant thickness (Figure 4). A change in the location
or the variation in the data indicates an evolution of the system under experiment.

 11

Fixed location
and variation

Fixed variation and
variable location

Fixed location and
variable variation

Figure 4 Different cases of run sequence plot to test fixed location and variation

• One can test the randomness of a set of sample using a lag plot. We plot the pairs
]1,1[),,(1 −∈∀+ niyy ii , (n is the size of the set of samples). The shape of the graph should be

like a cloud to indicate randomness. Ordered patterns on the lag plot indicate a correlation
between samples (Figure 5). The independence between sample is required for most
statistical test (see 3.3).

Perfectly random
samples Xn

An auto-correlated
set of samples
(Yn=Xn+Xn-1)

Not random!

Figure 5 Different lag plot

• Plenty of different tests exist to test the normality of a set of samples (see [SHAP68],
[FILL75]). The test described here consists in plotting in a quantile-quantile graph the
observed quantiles versus the theoretical quantile. This method can be applied to any
distribution. To be more precise lets consider F a cumulative distribution function and ix the

 12

ith value out of n in our samples set. ix is the i/n-quantile of our samples and we compute

)/(1 niFyi
−= the i/n-quantile of the theoretical distribution. We then plot all the pair ()ii yx , .

The samples follow the theoretical distribution if the plot is linear (Figure 6). The normality is
used to be able to conduct a t-test (see 3.3).

Normal
distribution

Non-normal
(uniform) distribution

Figure 6 Normal probability graphs for two different distributions

3.3 Comparing systems using sample data
One major problem in statistic is we do not have access to the real value describing our

data set (such as its mean, variance, distribution, etc.) but rather estimates of them. Moreover,
each time we draw a sample from our population we obtain a different estimate. For example, we
can compute the mean of a sample drawn from a population. This mean is different from the
actual population mean but give us an estimate of it. Therefore, we never get one definitive value
but rather a range of possible value in which the real value is likely to be. The size of this range is
determined by the probability to be wrong in this estimation (i.e. the probability for the real value
to be outside of the given range) chosen by the experimentalist.

In this section, we look at the techniques to compare two statistical results. In these tests,
it is required that the samples are independent. One of the test also require that the sample are
normally distributed. We can checked this properties with the tests of the last paragraph (see
3.2).

A (1-α)100% confidence interval for an estimated value is an interval (a, b) such as
αµ −=≤≤ 1)(baP , where µ is the estimated value. This means that the probability for the

estimated value µ to be in the interval (a, b) is (1-α), and the probability to be out (i.e. to be
wrong) is α.

The (1-α)100% confidence interval for the estimated mean of an independent sample of a
large enough population (usually more than 30 elements) with an unknown variance is:

�
�
�

�
�
�
�

�
+− −−

n
szx

n
szx 2/12/1 , αα . Where:

• n the size of the sample,

 13

• �⋅=
i ix

n
x 1 is the estimation of the mean,

• 2)(
1

1
� −⋅

−
= xx

n
s i is the sample variance of the samples,

• 2/1 α−z is the (1-α)/2-quantile of a normal unit random variable.

Consequently, to compare a statistical value with zero, we have to look if zero is included
in the (1-α)100% confidence interval or not. In the case of a positive answer, the statistical value
can not be considered significantly different from zero at this level of confidence.

In the case we have less than 30 samples, we have to assume that the population is
normally distributed to compute the confidence interval. Taking the same convention than before,
the (1-α)100% confidence interval is: [] []()nstxnstx nn /,/ 1;2/11;2/1 −−−− +− αα . Where []1;2/1 −− nt α is
the (1-α)/2 quantile of the t-distribution with n-1 degree(s) of freedom.

To compare n pairs of observation, the same experiment must be repeated n times on
each system. Then we compute the n differences of the elements in each pair, the mean of those
differences and its confidence interval. Finally, we look if this mean is significantly different from
zero (e.g. its confidence interval does not include zero). If it is not different from zero at the
desired confidence level, the two systems performed quite in the same way. Otherwise, one
system performs better (or worse) than the other.

The case of unpaired observations is more complicated and uses the t-test. Two set of
samples, with the size 1n and 2n respectively, 1x and 2x are the mean for each set, 1s and 2s
the variances. Then the (1-α)100% interval of confidence for the difference of the mean 21 xx − ,
is:

() [] () []()stxxstxx ⋅+−⋅−− −− νανα ;2/121;2/121 , , where

2

2
2

1

2
1

n
s

n
s

s += .is the variance and

2

1
1

1
1

2

2

2
2

2

1

2
1

1

2

2
2

1

2
1

−

�
�

�

�

�
�

�

�
⋅

+
+

�
�

�

�

�
�

�

�
⋅

+

+
=

n
s

nn
s

n

n
s

n
s

ν is the number of degree of freedom.

Again, we look if the confidence interval includes zero or not to tell if the systems are
significantly different.

The visualization tools selected in section 2 are able to conduct these tests and they will
be use for that purpose in the analysis and visualization module.

 14

4. Performance analysis
What the end user of the computer is concerned about is how long will it take to get the

result. By parallelizing a program, we expect a smaller execution time for the same problem or a
comparable execution time for a scaled problem size. For both cases, we are looking for a gain in
speed with the parallel version compare to the sequential version.

Knowing the speed-up is not enough to diagnose an application in order to tune it. We
need some other metrics that gives information about the internal behavior of the application. For
example, metrics that link the communication and the computation part of the execution time.

We investigate the influence of many parameters on the speed up, like the overhead, the
mean number of working processor etc. We give upper and lower bounds of the speed up given
certain parameters and under what circumstances these bounds are reached (i.e. the best or the
worst case).

We first describe of the parallel machine we have focused on. We then describe different
parameters and their influence on the speed up. Finally, based on these relations, we discuss a
type of diagram to analyze the performance of our parallel computer or program.

4.1 The parallel machine
The study conducted here is based on virtual parallel machines. It applies to clusters of

interconnected computers (no assumptions are made about the network) on the Beowulf scheme
[BEOW94]. Some of our assumptions may not be valid for shared memory systems.

We also take a high level point of view in this discussion as we only consider the
computation time and the communication time. The communication time is the cumulative time
spent in communication routines. It includes all the possible communication times between the
nodes: system call, daemon (e.g. MPI daemon). We include the waiting time in the
communication time since it is difficult to measure separately. The computation time includes
anything that would be included in the sequential version (e.g. effective calculation, disk I/O, etc.).

So our cluster can be seen as a set interconnected nodes, each of them can be in either
one of two states: computation state or communication state (see Figure 7).

 15

0 Tp=T2

t

Process 1

Process 2

Process 4

T4

Processing time

Communication time

Process 3

T4 T1 T3

NP

AP

Figure 7 Application trace chart

4.2 Assumptions
Here are a few assumptions we have made for our parallel machine, and their direct

consequences.

1) All the machines of the cluster are identical. This is not a significant constraint as
heterogeneous clusters are rare for practical reasons. This case is not studied here.

2) We compare our parallel software performance with sequential software performance on the
same machine. It is common to compare parallel performance with sequential performance.

3) The sequential program is pure computation, since there is no communication, and
represents the minimum of work to do. This means we do not consider congestion problems
or cache systems on computers. (See 4.3).

4.3 General metrics definitions
The response time is the time elapsed between the start of the program and its

completion. It includes both computation and communication time.

The computation time of the sequential program is equal to its response time Rs. For
each process in the parallel program, we take the notation (assuming we have n processors and

ni ≤≤1):

 processith theof timeresponse
processith on the n timecomputatio

processith on the ion timecommunicat

iii

i

i

XPR
P
X

+=

The time Xi is considered as a global overhead time due to the parallel architecture and
algorithm on processor i. We define the response time of the parallel program by the maximum of
all the response times:

 16

R R Rp i n i= =
≤ ≤max max()

1
.

Based on the assumption 1) that all the nodes are equivalent, there is a direct link
between the computation time and the amount of work done. Two machines working
independently on tasks for T units of time done the same work as a single machine working on
them for 2T units of time. We speak indifferently here of time or amount of work.

We can now define two general metrics, similar to [DEEA89], the speed up and the
efficiency:

program parallel on the timeresponse average the

efficiency the

up speed the

1

n

R
R

n
SUEF

R
R

SU

n

i i
p

p

s

� ==

=

=

We use the notation from Ray Jan [JAIN91]. A HB (higher is better) metric is a metric
whose high values are considered better than low values. A LB (lower is better) metric is a metric
whose low values are considered better than high values.

The speed up and the efficiency are both considered as HB. It implies that we had an
improvement in using a parallel version of the program, i.e. we get the result faster, if

nEFSU /11 ≥⇔≥ . The speed up represents our gain in using a parallel machine and the
efficiency represents how efficiently the resources are used.

The definition of the average response time on the parallel program leads to:

pp
p RR

n
R

≤≤ (direct property of the mean). Moreover, the third assumption we made translates

mathematically to the inequality:

s
n

i i
n

i i RPPR =≥≥�� == 011

It tells that the amount of work done in the parallel program is at least what was done in
the sequential one. We can obtain, with the last inequalities, a simple upper bound for the speed
up and the efficiency:

1&
1

≤≤�≤=≤� =
EFnSUnRRnRR pp

n

i is

We have the equality SU=n if si ipp RRRR == � & . That means the load is very well

balanced and there is no overhead due to the parallel program. In this case, the amount of work
done in the parallel machine is exactly the same as the work done in the sequential one and
every machine does exactly 1/nth of it with no parallel overhead. This case is rarely achieved and
is referred to as “embarrassingly parallel”.

With our assumption, it is impossible to have nSU > , the so-called superlinear speed up.
Other models of parallel machine show theoretically the possibility of the superlinear speedup
([HELM90], [GUST90]). We do not considerate this case here.

4.4 Other simple metrics
In this section, we propose different metrics which will help to provide an insight to the

application’s behavior. We look at the links between these metrics and the speed up. This set of
metrics will then be used in the performance discussion and the kiviat graphs (see 4.8)

 17

Let AP and NP be defined as the time when all processor are working and no processor
are working respectively (see Figure 7).

processors workingofnumber mean)(1

ty)(granulari ration computatio-ioncommunicat

overheadn computatio the

overhead global the

1

1

1

1

1

�

�

�

�

�

=

=

=

=

=

⋅=

=

−
=

−
=

−
=

n

i
p

n

i i

n

i i

s

s
n

i i

s

sp

s

s
n

i i

iiP
R

n

P

X
R

RP
POH

R
RRn

R
RR

GOH

η

The global overhead (GOH) is the relative difference in potential computation time: as

pRn (� =
=

n

i ip RRn
1

) represents the maximums amount of work the parallel machine could have

done, the difference sp RRn − represents the overhead due to the parallelization of the program.
This difference is normalized against Rs to obtain GOH. GOH is a positive value but has no upper
bound. This is a LB metric.

The computation overhead (POH) represents how much time we spent in extra
computation (due to different algorithms, different data representations, etc.) in the parallel

version compared to the sequential program (� =

n

i iP
1

 is the effective work done by the parallel

machine). This value is again normalized against Rs and is a positive value but has no upper
bound. This is a LB metric.

The η ratio represents the relative amount of time we spend in communications
compared to the computations. It is a positive unbounded value. This is a LB metric.

In the last definition,)(iP represents the amount of time when exactly i processors are in
the computation state. The average number of working processors is a HB metric.

We have to be careful about the meaning of certain metric and their LB or HB
characteristic. Albeit η is considered a LB metric, a low value by itself can be misleading. In fact,
we can make η very low: if we give to all the processors the entire sequential job to do and we
pick the first result to arrive (they should arrive roughly all together), the communication time is
null, so is η. In this case the speed up is equal to one (R Rp s=), that means no speed up, no

gain in time but a very low η ratio.

4.5 Global overhead and speed up
The assumptions made in 4.2 yield to interesting properties for the metrics defined

above. First of all, the global overhead (which can be easily measured) gives an upper bound and
lower bound of the speed up (Figure 8):

 18

n

1

0
0 n-1

SU

n
GOH + 1

1
GOH + 1

1

n/2

GOH

SU

Figure 8 Relation between SU and GOH for n≥≥≥≥2 (graph made with n=4)

11
1

111

+
≤≤

+

�−=
−

≤
−

=≤
−

≤−

GOH
nSU

GOH

SU
n

Rs
RnR

Rs
RRn

GOH
R

RR
SU

spsp

s

sp

The upper bound is reached if jipp RRjiRR =∀�= ,, . This is the perfectly well

balanced case. The lower bound is reached if 0,, 00 0
=≠∀=∃�= iippp RiiandRRiRRn . This

means that only one machine is working (machine 0i).

We can first say that 11 ≤�−≥ SUnGOH . If we expect any speed up the global
overhead has to be less than n-1. Otherwise, it is useless to try to improve speed by using a
parallel architecture. This condition is not very strong as sp RRnGOH ≥�−≥ 1 which
correspond to a very poor parallel algorithm (each node in the parallel version does, on average,
more work than the sequential version).

Second, the load balancing on the cluster can be measured by the quantity pp RR − . The
higher this quantity is, the further from its upper bound the speed up will be.

 19

4.6 Number of processor working and speed up
In this paragraph, we look at the influence of the last metrics on the speed up. First, we

show that the average number of processors working is very simply linked to the speed up:

SUn

POHSU
Rs

P
SU

Rs

P

R
R

n

P
R

iiP
R

n

n

i i
n

i i

p

s

n

i i
p

n

i
p

≥

�+⋅=⋅=⋅=

�=⋅=

��

��

==

==

)1(

1)(1

11

11

We have equality nSU = if 0
1

=⇔=� =
POHRPi s

n

i
; e.g., the parallel algorithm implies

no computation overhead. A necessary condition to obtain a speed up greater than one is to have
1≥n . Moreover, we have:

()
p

i ii ip

p

i iip

i i
p

R

XRR
nn

R

XRR
P

R
nnn

��

�
�

+−
=−

−−
=⋅−=−

)(1

So this difference represents the relative global amount of time the parallel program has
spent in the wait state, including both the waiting time during the execution of the process
(�i iX) and the waiting for the last process to end ()(ii p RR� −).

We can therefore see n as an indication of how well the program is parallelized. It is a
more effective and realistic upper bound of the speed up. It is the most speed up you can achieve
with this algorithm due to its structure. This is the maximum computation time left, because the
rest of the time is spent in waiting/communication. This maximum speed up can be reach if there
is no overhead of computation. Otherwise, POH shows how much extra work this algorithm
involves and how far the speed up is from its effective maximum.

We consider the influence of AP and NP on the speed up. These two measures are not
as meaningful as the average number of processors computing. As we will see, the times when
all the processors are working all together can be very small or even null and the speed up high
anyway. On the other hand, NP can be null and the speed up very low. Nevertheless, they can be
useful to diagnose a problem in the program in case the speed up is not as we expect it to be
(e.g. dead locks in communication).

First, they are linked:

�
�

�

�

�
�

�

�
−≤⋅�≤+

pp
P R

NPn
R
APnRNPAP 1

For AP. The time when all the processors are working is included in every computation
time (see Figure 7). So: �≤⋅�≤∀

i ii PAPnPAPi . With this first inequality, we obtain a lower

bound of the speed up given the ratio of AP to the parallel response time pR .

SU
R
R

R

P

R
APn

p

s

s

i i

p
≤⋅≤⋅

�

 20

For NP: the time when no processor is working is included in all communication time
(symmetric case as AP). So: si ii ii iiii RRPRnNPPRXNPi −≤−≤�−=≤∀ ���, . With this

inequality we get:

�
�

�

�

�
�

�

�
−≤

�−≤−≤⋅
�

p

p

i i

p

R
NPnSU

SUnSU
R

R

R
NPn

1

To have a speed up greater than one, the last condition requires that
nR

NP

p

11−≤ .

Therefore, we have the inequality:

�
�

�

�

�
�

�

�
−≤≤⋅

pp R
NPnSU

R
APn 1

SU SU

NP/Rp AP/Rp

1 0

n

1

1-1/n 1 1/n

SU<n.(1-NP/Rp)

SU>n.AP/Rp

Figure 9 Relation between the speed up, AP and NP.
As we can see on the graphs of Figure 9, AP and NP give only rough indication on the

speed up. NP can be very low and the speed up below one. Symmetrically, AP can be low and
the speed very low. Only the right part of both graphs are meaningful.

4.7 The ηηηη ratio and the overhead
A relation between η and the overheads (global and computation). It is not directly linked

to the speed up, but it is used to normalize η in the Kiviat graph (see 4.8).

POHGOH
R

PR

R

RR

R

PR

P

X

s

i is

s

i si

s

i i ii

i i

i i
−=

−
−

−
=

−
≥=

��� �

�

�η , and

 21

η
η

ηηη

=
−⋅+

≥

�⋅+≥⋅+=⋅=�⋅= ����

s

ss

si ii ipi ii i

R
RR

GOH

R
n

P
n

R
n

RPX

)1(

111

Resulting in: 0≥−≥≥ POHGOHGOH η . In particular, this last inequality forbids having
an important global overhead GOH, a small η ratio and a small computation overhead POH.

4.8 Tests and representations
We have shown several metrics and explained the kind of information they can provide

about speed up. Based on the different parameters that bound the speed up, we provide a
methodology to analyze our parallel software or architecture, shown Figure 10.

Error! Not a valid link.

Figure 10 Performance analysis flow chart
Kiviat graphs [MORI74] are a convenient way to present multiple metrics and detecting

problems. The concept is not new but is applied here to parallel computing. The principle of these
graphs is to put the metrics around a circle and alternate HB and LB metrics. There are typically
six or height metrics (eight here) but graphs with more can be drawn. Therefore, an excellent
system would yield a perfect star and a poor system a rotated star (see Figure 11). Other typical
patterns give information about the application.

Best System Worst system

Figure 11 Kiviat representation of a perfect system and the worse system
We use the metrics from the previous sections, normalized to the range [0;1]. To

normalize unbounded metrics, we assume that we are in the case 1≥SU . In that case, the
following inequalities are true: 1−≤ nGOH , 1−≤ nPOH , 1−≤− nnn and 1−≤≤ nGOHη .

 22

We use:
pR

P ,
pR

X ,
1

1
−

−
n

GOH ,
1−n

POH , EF ,
1−n

η ,
1

1
−
−−

n
nn and

p

pp

R
RR −

; two metrics are

artificially transformed from a LB metric to a HB metric by subtracting from one to complete the
required symmetry of the Kiviat diagram (see Figure 12).

pR
P

pR
X

1−n
POH

n
SU1−n

η

p

pp

R
RR −

1
1

−
−

n
GOH

1
1

−
−−

n
nn

Figure 12 Description of the metrics around the Kiviat graph

 23

5. Case Study
This NIST application, 3DMD, which we used for our study, solves a three dimensional

Helmholtz equation [BENN93]. The program is composed of three computational phases each
separated by a communication phase (i.e. two communication phases).

This program is written in C and uses the standard MPI communication environment
[SALA98]. It was run four times on eight processor for each parallel environment: LAM from the
Ohio Supercomputer Center7 and MPICH from ANL/MSU8. The parallel machine is a cluster of
400MHz PentiumIIs running Linux interconnected by a Fast-Ethernet switch (100 Mb/s). The
response time, communication and computation times for each process are collected using the
MPIProf library9.

Table 2 shows the measured response time of 3dmd on both parallel environments. We
assume here that these values are coming from a normally distributed independent population
but the size of the sample set is too small to test this assumption. We run a t-test on this data at
the 95% confidence level to determine if one MPI implementation perform better than the other.

LAM MPICH DIF
1 19.215345 18.884573
2 19.948568 14.756383
3 19.623048 17.062502
4 19.31237 17.304259
AVG 19.52483275 17.00192925 2.5229035
STDDEV 0.33172322 1.70116605 0.866603459
CONF 0.325082301 1.667109626 2.227671471

Table 2 3DMD on LAM and MPICH with 8 processors

As the confidence interval for the difference of the mean (2.52±2.22) does not contain
zero, the two means are considered different at this level of confidence. We can then say here
that the application performed better in the MPICH environment compared to the LAM
environment.

Table 3 provides a list of our performance indicators (computation time and commutation
time) as well as our proposed metrics. We plot each value of the corresponding indicator on a
Kiviat graph (see Figure 13). This Kiviat graph shows that the MPICH version performed slightly
better on all our metrics and our statistical t-test verifies that this result is statistically significant.

7 http://www.mpi.nd.edu/lam/
8 http://www-unix.mcs.anl.gov/mpi/mpich/
9 http://cmr.nist.gov/mpiprof/index.html

 24

LAM
nbProc 8

Rp avg(Ri) sum(Pi) sum(Xi) SU EF GOH POH ETA avg(n) Rp-avg(Ri) n-avg(n)
AVG 19.52483 16.17647 58.42359 70.9882 3.016997 0.377125 1.652214 -0.185474 1.215074 2.992936 3.34836 5.007064

STDEV 0.331723 0.39348 0.052321 3.165704 0.050967 0.006371 0.045061 0.355363 0.054569 0.05223 0.208699 0.05223
CONF 0.325082 0.385603 0.051274 3.102328 0.049946 0.006243 0.044159 0.348249 0.053476 0.051184 0.204521 0.051184

ALPHA 0.05
KIVIAT avg(Pi)/Rp avg(Xi)/Rp 1-GOH/(n-1POH/(n-1) EF eta/(n-1) 1-(avg(n)-n(Rp-avg(Ri))/Rp

0.374034 0.454474 0.763969 0 0.377125 0.173582 0.284705 0.171492

MPICH
nbProc 8

Rp avg(Ri) sum(Pi) sum(Xi) SU EF GOH POH ETA avg(n) Rp-avg(Ri) n-avg(n)
AVG 17.00193 14.93327 58.47791 60.98825 3.459407 0.432426 1.330724 -0.189741 1.042485 3.466074 2.068659 4.533926

STDEV 1.701166 1.845817 0.160293 14.626 0.360899 0.045112 0.233206 0.384846 0.247166 0.35602 0.969254 0.35602
CONF 1.66711 1.808865 0.157084 14.3332 0.353674 0.044209 0.228537 0.377142 0.242218 0.348892 0.94985 0.348892

ALPHA 0.05
KIVIAT avg(Pi)/Rp avg(Xi)/Rp 1-GOH/(n-1POH/(n-1) EF eta/(n-1) 1-(avg(n)-n(Rp-avg(Ri))/Rp

0.429936 0.448392 0.809897 0 0.432426 0.148926 0.352296 0.121672

Table 3 3DMD with LAM and MPICH performance results

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

avg(Pi)/Rp

avg(Xi)/Rp

1-GOH/(n-1)

POH/(n-1)

EF

eta/(n-1)

1-(avg(n)-n)/(n-1)

(Rp-avg(Ri))/Rp

Lam
mpich

Figure 13 Kiviat graph for the LAM and MPICH environment. (NB: a value bigger than 0 zero plotted for
POH/(n-1) to make it visible, but it is 0)

 25

6. SUMMARY
We have evaluated different visualization tools and chosen two of them (IDL and MatLab)

for our analysis and visualization module. We also presented a group of metrics to provide insight
into the performance of parallel applications for evaluation and tuning.

We have a prototype implementation for our collection and storage module. We are now
testing our metrics and the data collection tools on NIST applications and well-known benchmark
programs. Finally, the experiment control, the third part of this project, is in progress.

For a future work, we are looking at methods to measure the waiting time. As noted in
4.1, it is difficult to distinguish waiting time from communication time, since waiting is distributed
between the application, the MPI communication daemon and the operating system. We will
investigate the feasibility of obtaining this information by comparing data from different sources.

Many metrics defined in this paper rely on the availability of the sequential response time
(GOH, POH, SU). However, this value may not be available, for example if the sequential version
takes too long to run. We are therefore looking at alternative ways to obtain insight into
application and system performances.

 26

BIBLIOGRAPHY
JAIN91 JAIN, R. (1991). The art of computer systems performance analysis, Wiley, New

York.

PROB85 WALPOLE, R. E. & MYERS, R. H. (1985). Probability and Statistics for Engineers
and Scientists, third edition, MacMillan, New York.

DEEA89 DEREK L., EAGER, JOHN ZAHORJAN & EDWARD D. LAZOWSKA (1989).
Speedup versus efficiency in parallel systems, Proceeding of IEEE, volume 38, no 3,
408-423.

SIMO98 S. SIMON, M. COURSON (1998). Cluster profiling project.

BEOW94 CESDIS, “BEOWUL project at CESDIS”. http://cesdis.gsfc.nasa.gov/

STAT78 G. E.P. BOX, W. G. HUNTER, J. S. HUNTER (1978). Statistics for experimenters.
An introdution to Design, Data Analysis, and Model Building. John Willey & sons,
New York.

EXPL99 J. J. FILLIBEN, (1999). Exploratory Data Analysis,.NIST conference.

EXPE96 D. LIBES, (1996). Exploring Expect, a Tcl-base Toolkit for Automating Interactive
Programs, third edition, O’Reilly

SHAP68 S. S. SHAPIRO, M. B. WILK and H. J. CHEN (1968). A comparative study of various
tests for normality. J. Am. Statist. Ass. 63, 1343-1372

FILL75 J. J. FILLIBEN, (1975). The Probability Plot Correlation Coefficient Test for
Normality. Tehcnometrics, vol. 17, NO. 1, February 1975, 111-117

HELM90 D. P. HELMBOLD, C. E. McDOWELL (1990). Modeling Speedup (n) Greater than n.
IEEE Transactions on parallel and distributed systems, vol. 1, NO 2, April 1990.

GUST90 J. L. GUSTAFSON (1990). Fixed Time, Tiered Memory, and Superlinear Speedup.
IEEE Proceedings of the Fifth Distributed Memory Computing Conference, 1990.
Volume: 2 , Page: 1255 –1260

BENN93 K. R. BENNETT, Fast Direct Solution of Three-Dimensional Poisson and Helmholtz
Problems on Distributed Memory Machines, Proceedings of Sixth SIAM Conference
on Parallel Processing for Scientific Computing, Norfolk, Viginia, March 22-24, 1993.

SALA98 W. SALAMON, A.MINK, M. INDOVINA, M. COURSON, Evaluation of Applications
on a Loosely-Coupled Cluster, NISTIR 6148, April 1998.

NIST99 http://www.nist.gov/

SNEL97 R. SNELICK, M. INDOVINA, M. COURSON, A. KEARSLEY, “Tuning Parallel and
Networked Programs with S-Check”, International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA'97), Las Vegas,
Nevada (June 30 - July 3, 1997), http://cmr.ncsl.nist.gov/scheck, 1997

MINK95 A. MINK, “Operating Principles of Multikron Virtual Counter Performance
Instrumentation for MIMD Computers”, NISTIR 5743, November 1995.
http://www.multikron.nist.gov.

SALA99 W. J. SALAMON, A. MINK, “Linux Cluster at NIST”, Linux Journal, pg 105-109, June
1999. http://www.linuxjournal.com

SSYS98 S system at Lucent Technologies. http://cm.bell-
labs.com/cm/ms/departments/sia/S/index.html

MORI74 M. F. MORRIS (1974), Kiviat Graphs – Conventions and Figure of Merit,
Performance Evaluation Reviw, 3(3), 2-8.

 i

ANNEXE
A Brief History of NIST [NIST99]
The National Institute of Standards and Technology (NIST), formerly the National Bureau

of Standards (NBS), was established by Congress in 1901 to support industry, commerce,
scientific institutions, and all branches of Government. For nearly 100 years the NIST/NBS
laboratories have worked with industry and government to advance measurement science and
develop standards.

NBS was created at a time of enormous industrial development in the United States to
help support the steel manufacturing, railroads, telephone, and electric power, all industries that
were technically sophisticated for their time but lacked adequate standards. In creating NBS,
Congress sought to redress a long-standing need to provide standards of measurement for
commerce and industry and support the "technology infrastructure" of the 20th Century.

In its first two decades, NBS won international recognition for its outstanding
achievements in physical measurements, development of standards, and test methods -- a
tradition that has continued ever since. This early work laid the foundation for advances and
improvements in many scientific and technical fields of the time, such as standards for lighting
and electric power usage; temperature measurement of molten metals; and materials corrosion
studies, testing, and metallurgy.

Both World Wars found NBS deeply involved in mobilizing science to solve pressing
weapons and war materials problems. After WWII, basic programs in nuclear and atomic physics,
electronics, mathematics, computer research, and polymers as well as instrumentation,
standards, and measurement research were instituted.

In the 1950s and 1960s, NBS research helped usher in the computer age and was
employed in the space race after the stunning launch of Sputnik. The Bureau's technical
expertise led to assignments in the social concerns of the Sixties: the environment, health and
safety, among others. By the Seventies, energy conservation and fire research had also taken
their place at NBS. The mid-to-late 1970s and 1980s found NBS returning with renewed vigor to
its original mission focus in support of industry. In particular, increased emphasis was placed on
addressing measurement problems in the emerging technologies. Many believe that the
Stevenson-Wydler Act implemented, throughout the federal laboratories, the practices that had
been developed at NBS over the years: cooperative research and technology transfer activities.

The Omnibus Trade and Competitiveness Act of 1988 -- in conjunction with 1987
legislation -- augmented the Institute's uniquely orchestrated customer-driven, laboratory-based
research program aimed at enhancing the competitiveness of American industry by creating new
program elements designed to help industry speed the commercialization of new technology. To
reflect the agency's broader mission, the name was changed to the

National Institute of Standards and Technology (NIST). These efforts, and the
organizational changes brought by the NIST Authorization Act for 1989 which created the
Department of Commerce's Technology Administration to which NIST was transferred, served as
a critical examination of the role of NIST in economic growth. These mission and organizational
changes, initiated under the Bush Administration were reaffirmed and strengthened by the Clinton
Administration.

In addition to the reviews by Congress, the Administration, and the Department of
Commerce, the Visiting Committee on Advanced Technology (VCAT) of NIST reviews and makes
recommendations regarding the general policy, organization, budget, and programs of NIST. The
VCAT holds four business meetings each year with NIST management, and summarizes its
findings each year in an annual report that is submitted to the Secretary of Commerce and
transmitted by the Secretary to Congress.

 ii

NIST's four major programs are designed to help U.S. companies achieve their own
success, each one providing appropriate assistance or incentives to overcoming obstacles that
can undermine industrial competitiveness. The programs are:

• Measurement and Standards Laboratories that provide technical leadership for vital
components of the nation's technology infrastructure needed by U.S. industry to continually
improve its products and services;

• a rigorously competitive Advanced Technology Program providing cost-shared awards to
industry for development of high-risk, enabling technologies with broad economic potential;

• a grassroots Manufacturing Extension Partnership with a nationwide network of local centers
offering technical and business assistance to smaller manufacturers; and

• a highly visible quality outreach program associated with the Malcolm Baldrige National
Quality Award that recognizes continuous improvements in quality management by U.S.
manufacturers and service companies.

NIST organization chart

Figure 14 Organization chart.
The Information Thechnology Laboratory divides itself in division and than in groups. I

was working in the Scalable Parallel Systems & Applications in the High-Perfomance Systems &
Services Division.

Information Technology Laboratory
An agency of the U.S. Department of Commerce's Technology Administration, the

National Institute of Standards and Technology's primary mission is to promote U.S. economic
growth by working with industry to develop and apply technology, measurements, and standards.
The NIST's Information Technology Laboratory (ITL) is responding to the growing need for
measurement and testing technology to support the development of computing and
communications systems that are usable, scalable, interoperable, and secure. This need has

 iii

come into sharper focus in recent years with the national effort to develop an information
infrastructure and to support U.S. industry in a global information marketplace.

ITL has programs in three major areas:

• developing tests for human-machine interfaces, software diagnostics and performance,
computer and network security, advanced network technologies, mathematical software, and
conformance to standards;

• collaborating, consulting and operational services in computational sciences and information
services; and 3.federal computer and network security activities;

• federal computer and network security activities.

High-Performance Systems & Services Division
The High Performance Systems and Services Division (895) of the Information

Technology Laboratory enables effective application of high performance computing and
communications systems in support of the U.S. information technology industry and NIST by:
Conducting research, development and evaluation of advanced hardware and software
components, new architectures, novel application technologies, and innovative measurement and
test methods for improved computing performance, scalability, functionality, interoperability,
flexibility, reliability and economy;

Serving as a testbed for R&D in high-performance computing and information
technologies such as embedded computing, displays, and data storage, gaining experience in the
deployment of these technologies, and developing metrics for the representative technologies;

Serving as a responsive, effective mission-critical resource spanning computational,
communication, mass storage, security, archival, and scientific visualization services; and
Providing and managing state-of-the-art computing and networking facilities which integrate and
support an enterprise-wide heterogeneous information technology environment for NIST.

